Hypothesis: Does the Evolution of Complex Life Depend on the Star Type?

Earth is the only known example of a planet with life, so the history of life on Earth provides the only information regarding the timescale required for microscopic, single-celled life to evolve into bigger and more complex forms similar to plants, animals, or fungi. This process took about four billion years from the cooling of early Earth through today. But does this four billion year timescale apply when thinking about life on other planets?

It is certainly possible that complexity, on average, takes about four billion years to develop on any planet that already has life. If this were the case, then astronomers should search a wide range of stars (yellow dwarfs like our sun as well as cooler orange and red dwarf stars) because any of them might already have complex life. Although we really have no idea at all, this idea of “equal evolutionary time” is sometimes invoked by scientists as a default assumption: since we don’t know anything else, why not assume an average timescale of four billion years?

I suggest an alternative viewpoint to this assumption in a paper entitled “Does the evolution of complex life depend on the stellar spectral energy distribution?” and published in Astrobiology. In this paper, I present the hypothesis that the evolutionary timescale is constrained by the total energy that falls upon a planet and could actually be harnessed by life. Instead of assuming a fixed four billion year timescale, I calculate the amount of time it would take planets around different star types to accumulate the same amount of free energy that Earth received over its history. This assumption of “proportional evolutionary time” suggests that complex life on planets orbiting yellow dwarf stars like our sun might also take about four billion years to develop; however, planets around orange dwarf stars would take much longer, closer to five or ten billion years. And, following this hypothesis, planets orbiting red dwarfs would need a hundred billion years (longer than the present age of the universe) before they accumulated enough energy for complex life.

This idea remains a hypothesis until astronomers are able to search for signs of life around extrasolar planets. But this idea of proportional evolutionary time suggests that the coolest stars might not be the best places to look for complex life today.

Inferring the Climates of Red Dwarf Planets

Planets orbiting red dwarf stars are unique compared to other star systems because such planets are prone to falling into synchronous rotation, so that one side experiences perpetual day and the opposite side resides in permanent night. Such planets could still be habitable, sustaining liquid water and perhaps even life, so such systems continue to be targeted in the search for signs of life on exoplanets.

One starting point to looking for life on such worlds is to infer properties of an exoplanet climate from astronomical data. Eric Wolf, Ravi Kopparapu, and myself examine this problem in a paper titled “Simulated phase-dependent spectra of terrestrial aquaplanets in M dwarf systems” and published in The Astrophysical Journal. Infrared emission and reflected stellar light from a planet changes as it orbits its host star. We should that observations of these orbital changes in thermal energy could provide important information on the circulation state of the planet, the location of major cloud decks, and the abundance of water vapor. As the next generation of space telescope are designed and launched, methods such as these will become important tools for understanding the potential of M-dwarf systems to support life.

How Habitable are Planets Orbiting Red Dwarfs?

Planets in the habitable zone of low-mass, cool stars are expected to be in synchronous rotation, where one side of the planet always faces the host star (the substellar point) and the other side experiences perpetual night (the anti-stellar point). Previous studies using three-dimensional climate models have shown that slowly rotating plants orbiting these low-mass stars should develop thick water clouds form at substellar point, at the point at which the star is directly overhead, which should increase the reflectivity, and thus stabilize the planet against increased warming at the inner edge of the habitable zone.

However these studies did not use self-consistent orbital and rotational periods for synchronously rotating planets placed at different distances from the host star, which are a requirement from Kepler’s laws of motion. We address this issue in a new study led by Dr. Ravi Kopparapu, on which I am a co-author, titled “The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models.” In this study, we use correct relations between orbital and rotational periods to show that the inner edge of the habitable zone around low mass, cool stars is not as close as the estimates from previous studies. We also discuss how the stellar composition, or ‘metallicity,’ can affect the orbital distance of the habitable zone.

Geothermal Heating and Habitability Around Red Dwarfs

Small red stars, known by astronomers as “M-dwarfs”, are the most abundant type of star in the sky and are also the most long-lived of all stars. This means there are plenty nearby of M-dwarfs to search for possible habitable planets, and many current and planned exoplanet surveys emphasize the search for potential worlds orbiting within the habitable zone of these low-mass stars. Astrobiologists often use the term “habitability” to indicate a planet’s ability to sustain liquid water on its surface, thereby providing conditions where life might be able to develop and thrive. The corresponding “habitable zone” describes the range of orbital distances that can support these clement conditions and not lose the water to a rapid runaway greenhouse (from too close an orbit) or a cool condensing atmosphere (from too far an orbit).

The problem with planets orbiting M-dwarfs is that they are prone to fall into “synchronous rotation” so that one side of the planet always faces the star, while the other side remains in perpetual darkness. Synchronous rotation can occur as a result of tidal forces from gravitational interactions between two orbiting bodies (Earth’s moon is an example of an object in synchronous rotation, so that we only ever see one side from the ground). For a planet orbiting an M-dwarf, the “sub-stellar point” beneath a constant stream of starlight is ceaselessly warmed, while the opposing “anti-stellar point” receives no starlight at all and resides in total darkness. One potential problem is that the atmosphere may condense into large ice caps on the frigid night side of these planets, which could result in total atmosphere collapse and the loss of habitable conditions.

Fortunately, the large-scale motions of the atmosphere help to redistribute this energy and, in many studies with climate models, can help avoid this atmospheric freeze-out. In a paper published in the Monthly Notices of the Royal Astronomical Society, my co-author and I use a three-dimensional computer climate model to examine the role of geothermal heating on planets orbiting M-dwarfs. Geothermal heating is another consequence of tidal forces from a close orbit, and this additional surface warming can help to amplify the asymmetric distribution of energy transport toward the night side of the planet. This can help to induce the melting of ice near the anti-stellar point and create additional habitable area surrounding the night-time hemisphere.

We also examine the large-scale dynamical circulations on these synchronous rotating planets in comparison to the general circulation patterns on Earth. We demonstrate that the direction of of the meridional (i.e. north-south) circulation changes directions from one side of the sub-stellar point to the other. That is, a global average of the meridional circulation provides an incomplete picture of the large-scale dynamics because the eastern and western hemispheres each show strong motion but in opposite directions that cancel when summed together. Additionally, we examine the presence of a cross-polar circulation that transports energy and mass from the sub-stellar to anti-stellar point across the northern and southern poles. This also contributes toward maintaining climate stability and avoiding atmospheric freeze-out with a circulation pattern atypical of those observed on Earth.

Our study emphasizes the need for careful analysis when considering how the atmospheric dynamics of a synchronously rotating terrestrial planet may differ from our own. The study of Earth-like exoplanets must begin with analogies to observations on Earth, and studies like ours help to apply Earth system models toward more general planetary system. As research into planetary habitability continues, through theory as well as observations, we will indeed continue to observe how even basic physical principles can manifest in very different ways on these alien worlds.