Greenhouse Warming on Earth’s Past, Present, and Future

Carbon dioxide in Earth’s atmosphere provides an important regulator of climate. Without it, or with too little, Earth would be completely frozen. But the rapid rise in carbon dioxide in recent times due to fossil fuel consumption and changes in land use has caused unprecedented warming with consequences to human civilization.

Understanding how Earth’s climate responds to atmospheric carbon dioxide is an important problem not only for anthropogenic climate change today but also for understanding Earth’s distant past (when the sun was fainter than today) and distant future (when the sun becomes brighter than today). In a paper by Eric Wolf, Brian Toon, and myself titled “Evaluating climate Sensitivity to CO2 across Earth’s history” and published in Journal of Geophysical Research – Atmospheres, we calculate the expected warming for early-, modern-, and future-Earth scenarios across a much wider range of carbon dioxide levels than typically considered for present-day climate change. We show that a doubling of atmospheric carbon dioxide would have caused a greater amount of warming on early Earth (when the carbon dioxide fraction of the atmosphere was high) compared to today (when carbon dioxide is a trace constituent). In general the amount of warming to be expected from such a carbon dioxide doubling (known as the “climate sensitivity”) depends upon the amount of solar energy received, the starting carbon dioxide budget, and the mean temperature of the planet.

Paying for Space Settlement

Bold visions for the human settlement of Mars, and perhaps beyond, would require unprecedented technical management over successive generations. Space settlement can also only succeed with an uninterrupted and sufficient supply of resources, as the unique dangers of space would make food, water, and even breathable air scarce and expensive resources. Gradually building the infrastructure of a permanent space settlement would also be costly, and unlikely to provide any direct financial benefits to investors in a timely manner.

I recently published a chapter titled “Can deep altruism sustain space settlement?” in the book The Human Factor in a Mission to Mars. In this chapter I explore the idea of “deep altruism,” where a donor is concerned not with benefits to themselves or kin but to distant future descendants for whom they may have no direct connection. Similar to a time capsule or other grand construction or big science projects in human history, space settlement may provide benefits to the distant future that are not easily identifiable today. Wealthy individuals, foundations, and corporations interested in the permanent human settlement of space may find the idea of investing in humanity’s long-term future to be valuable and worthwhile, even if the return on investment is not immediately obvious.

Commercial interests will likely be an important factor as space industries expand. But investment in space infrastructure out of deep altruism can complement market forces in establishing a sustainable human presence in space.

Detectability of Future Earth

This special issue of the journal Futures features papers that examine the future of Earth and civilization from an astrobiological perspective, particularly focused on the extent to which human activities could be detectable across interstellar distances. As the guest editor of this special issue, my paper “Introduction: Detectability of future Earth” provides a synthesis of all the contributions in the volume.

This collection of papers demonstrates an important connection between futures studies and the search for extraterrestrial intelligence. The first issue is to examine possible future trajectories for human civilization: our growth in population and energy consumption will eventually face limits, even with advances in technology. This hybridization of the planet with technology is uncharted territory in Earth’s history, with an uncertain future or trajectory. The second issue is whether or not any other civilizations in the galaxy have already passed through this trajectory by achieving a sustainable hybridization of technology with their own planet. Evidence of such civilizations would be good news for humanity, as this would mean that our own future includes viable options for longevity. But if the search for extraterrestrial life turns up nothing, then this may indicate that energy-intensive civilizations might not be sustainable at all on a galactic scale. Our challenge as a species is to critically examine our possible futures and identify strategies for increasing the longevity of our civilization.

The collection of papers from this special issue on the Detectability of Future Earth is available on the Futures website.


Jacob Haqq-Misra (2019) Introduction: Detectability of future Earth, Futures 106: 1-3.
This special issue emphasizes the connection between the unfolding future of the Anthropocene with the search for extraterrestrial civilizations.

Brendan Mullan & Jacob Haqq-Misra (2019) Population growth, energy use, and the implications for the search for extraterrestrial intelligence, Futures 106: 4-17.
Limits to growth in population and energy consumption could occur within 2-3 centuries, which might imply that energy-intensive extraterrestrial civilizations are also rare.

Gina Riggio (2019) Earth in Human Hands, by David Grinspoon., Futures 106: 18-19.
This book review highlights Grinspoon’s observation that we are entering a new epoch of planetary self-awareness.

Julia DeMarines (2019) Light of the Stars: Alien Worlds and the Fate of the Earth, by Adam Frank., Futures 106: 20.
This book review highlights the connections between the future of Earth and the possibility of extraterrestrial civilizations.

Carl L. DeVito (2019) On the Meaning of Fermi’s paradox, Futures 106: 21-23.
This mathematical treatment of the Fermi paradox suggests that civilizations in the galaxy may emerge very slowly.

S. Stoney Simons & Jacob Haqq-Misra (2019) A trip to the moon might constrain the Fermi Paradox, Futures 106: 24-32.
Building a lunar observatory at mid-infrared wavelengths could help to improve the search for biosignatures.

Jacob Haqq-Misra (2019) Policy options for the radio detectability of Earth, Futures 106: 33-36.
Earth’s future radio detectability depends upon the risks we assume about the possibility of extraterrestrial contact.

Sanjoy M. Som (2019) Common identity as a step to civilization longevity, Futures 106: 37-43.
Civilization can extend it’s longevity through early-childhood psychology education based upon the “overview effect” of observing Earth from space.

The Risk of Transmitting to Space

The idea of messaging to extraterrestrial intelligence (METI) suggests that a possible way to establish contact with civilizations on other planets is to first send transmissions ourselves. The search for extraterrestrial intelligence (SETI) has traditionally followed a passive listen-only mode to detect any alien transmissions headed our way. If everyone is listening and nobody is transmitting, then METI might be the way to attract attention.

But is attracting attention from extraterrestrial civilizations necessarily good? We have no idea if contact with extraterrestrial beings would benefit or harm humanity, or even be completely neutral in its impact. Some scientists are unconcerned about possible risks and suggest that METI transmissions should occur whenever they are viable. Others worry that METI transmissions could expose Earth to significant risk and argue in favor of a moratorium on METI activities.

I recently published a paper titled “Policy options for the radio detectability of Earth” in the Futures special issue on the Detectability of Future Earth. In this paper, I argue that the METI risk problem cannot be conclusively decided until contact with extraterrestrial intelligence actually occurs. This implies that any moratorium on METI activities cannot be based on the requirement for new information, as the only new information that would actually suffice is the actual discovery of alien life. Following from this conclusion, there are three possible policy options for proceeding with SETI and METI:

  1. Precautionary malevolence – alien contact is likely to be harmful, so we should not engage in METI until SETI succeeds.
  2. Assumed benevolence – alien contact is likely to be helpful, so we should engage in METI along with SETI.
  3. Preliminary neutrality – alien contact is unlikely to occur at all, so we may as well do SETI and METI if funds are available.

All three of these policies remain viable options until we actually discover extraterrestrial intelligence and learn the actual risks to humanity. Precautionary malevolence would imply that human civilization should reduce all of its transmission activities so as to minimize its detectability by alien observers. Likewise, assumed benevolence implies that greater transmissions from Earth would increase the chances of contact. But both of these policies are optimistic about the likelihood of contact with alien life. Perhaps a more pragmatic approach is preliminary neutrality, which would remain consistent with business-as-usual on Earth and would not recommend any significant changes to Earth’s future detectability.