Hypothesis: Does the Evolution of Complex Life Depend on the Star Type?

Earth is the only known example of a planet with life, so the history of life on Earth provides the only information regarding the timescale required for microscopic, single-celled life to evolve into bigger and more complex forms similar to plants, animals, or fungi. This process took about four billion years from the cooling of early Earth through today. But does this four billion year timescale apply when thinking about life on other planets?

It is certainly possible that complexity, on average, takes about four billion years to develop on any planet that already has life. If this were the case, then astronomers should search a wide range of stars (yellow dwarfs like our sun as well as cooler orange and red dwarf stars) because any of them might already have complex life. Although we really have no idea at all, this idea of “equal evolutionary time” is sometimes invoked by scientists as a default assumption: since we don’t know anything else, why not assume an average timescale of four billion years?

I suggest an alternative viewpoint to this assumption in a paper entitled “Does the evolution of complex life depend on the stellar spectral energy distribution?” and published in Astrobiology. In this paper, I present the hypothesis that the evolutionary timescale is constrained by the total energy that falls upon a planet and could actually be harnessed by life. Instead of assuming a fixed four billion year timescale, I calculate the amount of time it would take planets around different star types to accumulate the same amount of free energy that Earth received over its history. This assumption of “proportional evolutionary time” suggests that complex life on planets orbiting yellow dwarf stars like our sun might also take about four billion years to develop; however, planets around orange dwarf stars would take much longer, closer to five or ten billion years. And, following this hypothesis, planets orbiting red dwarfs would need a hundred billion years (longer than the present age of the universe) before they accumulated enough energy for complex life.

This idea remains a hypothesis until astronomers are able to search for signs of life around extrasolar planets. But this idea of proportional evolutionary time suggests that the coolest stars might not be the best places to look for complex life today.