Inferring the Climates of Red Dwarf Planets

Planets orbiting red dwarf stars are unique compared to other star systems because such planets are prone to falling into synchronous rotation, so that one side experiences perpetual day and the opposite side resides in permanent night. Such planets could still be habitable, sustaining liquid water and perhaps even life, so such systems continue to be targeted in the search for signs of life on exoplanets.

One starting point to looking for life on such worlds is to infer properties of an exoplanet climate from astronomical data. Eric Wolf, Ravi Kopparapu, and myself examine this problem in a paper titled “Simulated phase-dependent spectra of terrestrial aquaplanets in M dwarf systems” and published in The Astrophysical Journal. Infrared emission and reflected stellar light from a planet changes as it orbits its host star. We should that observations of these orbital changes in thermal energy could provide important information on the circulation state of the planet, the location of major cloud decks, and the abundance of water vapor. As the next generation of space telescope are designed and launched, methods such as these will become important tools for understanding the potential of M-dwarf systems to support life.

Greenhouse Warming on Earth’s Past, Present, and Future

Carbon dioxide in Earth’s atmosphere provides an important regulator of climate. Without it, or with too little, Earth would be completely frozen. But the rapid rise in carbon dioxide in recent times due to fossil fuel consumption and changes in land use has caused unprecedented warming with consequences to human civilization.

Understanding how Earth’s climate responds to atmospheric carbon dioxide is an important problem not only for anthropogenic climate change today but also for understanding Earth’s distant past (when the sun was fainter than today) and distant future (when the sun becomes brighter than today). In a paper by Eric Wolf, Brian Toon, and myself titled “Evaluating climate Sensitivity to CO2 across Earth’s history” and published in Journal of Geophysical Research – Atmospheres, we calculate the expected warming for early-, modern-, and future-Earth scenarios across a much wider range of carbon dioxide levels than typically considered for present-day climate change. We show that a doubling of atmospheric carbon dioxide would have caused a greater amount of warming on early Earth (when the carbon dioxide fraction of the atmosphere was high) compared to today (when carbon dioxide is a trace constituent). In general the amount of warming to be expected from such a carbon dioxide doubling (known as the “climate sensitivity”) depends upon the amount of solar energy received, the starting carbon dioxide budget, and the mean temperature of the planet.

Water Loss on Planets Orbiting Low-Mass Stars

An Earth-like planet tends to increase its water vapor content as its mean temperature increases. The inner edge of the habitable zone is defined by the point at which such a planet begins to lose its water, thus rendering it uninhabitable. A “moist greenhouse” occurs when the (usually dry) upper atmosphere becomes wet, which results in the destruction of water molecules by incoming sunlight. Another process knows as a “runaway greenhouse” occurs due to the increased greenhouse effect of water vapor in the lower atmosphere, which further drives evaporation and more warming. Either of these processes could cause a planet at the inner edge of the habitable zone to lose its oceans entirely.

In a recent paper published in The Astrophysical Journal, titled “Habitable Moist Atmospheres On Terrestrial Planets Near the Inner Edge Of the Habitable Zone Around M-dwarfs,” my co-authors and I conduct three-dimensional climate simulations of planets orbiting low-mass stars. We show that planets near the inner edge of the habitable zone should generally first enter a moist greenhouse state, although planets around the coolest stars we analyzed should directly transition into a runaway greenhouse state instead. Some of these planets orbiting low-mass stars could experience very slow water loss that could last up to the lifetime of the star, which could allow habitable conditions to persist even during a moist or runaway greenhouse.

Snowball and Greenhouse Atmospheres Around Other Stars

Earth’s climate has been shown by a wide range of climate models to be bistable, which means that it can exist in both a frozen state or a warm, ice-free state with the same amount of solar energy. Earth today resides in a warm state with small ice caps, but geologic evidence suggests that the Neoproterozoic Earth, about 500 Myr ago, may have been frozen all the way down to the equator.

Other terrestrial planets orbiting other stars should behave similarly, although the transition point between climate states may differ for stars that are brighter and dimmer than the sun. In a recent paper published in The Astrophysical Journal, titled “Constraints on climate and habitability for Earth-like exoplanets determined from a general circulation model,” my co-authors and I analyze three-dimensional climate simulations of planets orbiting a range of stars. We show that planets can exist around such stars as a frozen snowball, partial melt with an equatorial waterbelt, temperature conditions everywhere, and a hothouse with gradual water loss. Stars slightly cooler than the sun could maintain habitable conditions for longer periods of time, due to the slower rate of water loss.