Jacob Haqq-Misra

You are currently browsing articles tagged Jacob Haqq-Misra.

Colonizing Mars

National space agencies and private corporations have declared plans to send humans to the red planet, with longer-term planets of settlement and resource extraction likely to follow. Such actions may conflict with the Outer Space Treaty of 1967, which currently prohibits any sovereign claims in space.

In a recent Space Policy paper written by Sara Bruhns and myself, titled “A pragmatic approach to sovereignty on Mars,” we develop a practical approach toward allowing the settlement of space and use of its resources through a “bounded first possession” model with a required planetary park system. We suggest that exclusive economic claims could be made without establishing sovereignty on Mars, and we propose a model for management and conflict resolution on Mars that build upon lessons from history. We also recommend revisions to the Outer Space Treaty to resolve the current ambiguity of how nations, corporations, and individuals can use the resources of space.

Planets in the habitable zone of low-mass, cool stars are expected to be in synchronous rotation, where one side of the planet always faces the host star (the substellar point) and the other side experiences perpetual night (the anti-stellar point). Previous studies using three-dimensional climate models have shown that slowly rotating plants orbiting these low-mass stars should develop thick water clouds form at substellar point, at the point at which the star is directly overhead, which should increase the reflectivity, and thus stabilize the planet against increased warming at the inner edge of the habitable zone.

However these studies did not use self-consistent orbital and rotational periods for synchronously rotating planets placed at different distances from the host star, which are a requirement from Kepler’s laws of motion. We address this issue in a new study led by Dr. Ravi Kopparapu, on which I am a co-author, titled “The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models.” In this study, we use correct relations between orbital and rotational periods to show that the inner edge of the habitable zone around low mass, cool stars is not as close as the estimates from previous studies. We also discuss how the stellar composition, or ‘metallicity,’ can affect the orbital distance of the habitable zone.

I am pleased to announce that the first volume of the Blue Marble Space Short Story Collection is now available! This volume, titled Tales From Spaceship Earth, includes stories from six different scientists at the Blue Marble Space Institute of Science and is the first in an ongoing series of science-informed fiction.

This collection of stories reflects an intersection of each author’s knowledge of science and vision of the future. These unique perspectives range from the near-term evolution of the space station program, to the beginnings of martian colonies, to the ultimate end of life on Earth–all of which grapple with critical issues of our transformation into a spacefaring society.

This book is available from Amazon as in both paperback and Kindle formats. Proceeds from this collection directly support the research of BMSIS scientists.

Global catastrophes are events that could severely cripple or destroy the foundations of civilization. Potential global catastrophes include nuclear winter, large asteroid impacts, super-volcanic eruptions, and pandemics. Humans may not necessarily become extinct under such scenarios, but, without adequate advance preparation, rebuilding civilization following such a catastrophe could prove difficult.

In a paper published in a special issue of the journal Futures, my co-authors and I present several concepts of “Isolated refuges for surviving global catastrophes.” Although catastrophic events could destroy a significant portion of the human population, isolated refuges would provide a way to protect a small group of humans so that they survive long enough to rebuild civilization. We discuss several factors that are critical for ensuring the success of a refuge, including self-sufficiency, a continuous population, secrecy, and adequate monitoring of the outside world.

We also discuss the concept of surface-independence, suggesting that an underground, underwater, or space-based refuge might provide the greatest protection of its inhabitants from the effects of global catastrophes. Any of these refuges could significantly make the human species more resilient to catastrophic threats. Space-based refuges provide an exceptional degree of isolation from Earth, and the cost of such an extraterrestrial refuge might be best “piggybacked” onto existing scientific endeavors that seek to establish a permanent presence on the moon or elsewhere in space.

« Older entries § Newer entries »