You are currently browsing articles tagged BMSIS.

Red dwarf stars outnumber yellow dwarf stars like our sun by over a factor of ten. Observations of exoplanets have also shown that rocky, and potentially habitable, planets are just as common around red dwarfs as yellow dwarfs. But if these much smaller stars are more commonplace, then why do we find ourselves around a yellow star like the sun, instead of a red dwarf?

My co-authors and I attempt to address this question of selection bias in a recent paper titled “Why do we find ourselves around a yellow star instead of a red star?” and published in International Journal of Astrobiology. We take a statistical approach to thinking about the region around all stars where life is most likely to develop. The liquid water habitable zone provides the best observational constraint on where we would expect to find planets that could support conscious observers like us, and this study examines the probability of finding oneself on a planet in the habitable zone of a yellow dwarf star, compared to a red dwarf. The results show that even though red dwarfs are much more numerous, they have a narrower habitable zone than yellow dwarfs, so our existence around a star like the sun is actually to be expected.

This study also considers that red dwarf stars will be even more numerous in the distant future of the universe, due to their much longer lifetimes than other stars. If these red dwarf stars will eventually become the predominant place for conscious observers to develop, then why do we not instead find ourselves around a red dwarf star billions or trillions of years into the future? The statistics for this aspect of the problem suggest that our existence around a yellow dwarf star today, compared to a red dwarf star in the future, might be a slight statistical anomaly—perhaps on the order of finding oneself born ambidextrous or with perfect pitch. But this statistical unlikelihood might also suggest that life is wholly impossibly around red dwarf stars, or else any type of conscious observers that do develop around such stars will be drastically different from our type of conscious life.

Finding sources of funding to search for life in the universe can be tricky, with only a few individual wealthy investors and limited opportunities for government research support. New fundraising ideas are needed in order to sustain the search for extraterrestrial intelligence (SETI) over the coming decades.

In a recent paper titled “Funding the search for extraterrestrial intelligence with a lottery bond,” published in Space Policy, I propose the establishment of a “SETI Lottery Bond” to help defray the costs of operating observing facilities like the Allen Telescope Array. The SETI Lottery Bond would provide a fixed-rate of interest that continues in perpetuity, until the first confirmed discovery of extraterrestrial intelligent life, at which point a subset of shares will be awarded a prize from a lottery pool. Investors can also trade their shares, so that SETI Lottery Bond shares may be passed between generations, teaching the value of intergenerational savings while maintaining hope for the discovery of extraterrestrial life.

Lottery-based savings products can only be offered by financial institutions with the legal authorization to engage in banking and gaming activities. I propose that one or more financial institution could realize a profit through the establishment and management of a SETI Lottery Bond, while simultaneously promoting individual savings habits and assisting the search for extraterrestrial intelligent life.

The outer edge of the habitable zone is traditionally defined as the outermost orbital distance at which a planet could sustain liquid water on its surface. At this distance orbit, Earth-like planets with plate tectonics (or a similar process for recycling volatiles) should build up dense carbon dioxide atmospheres that help offset the reduction in starlight. Carbon dioxide released from volcanoes provides additional greenhouse warming, although rainwater dissolves some of this. The amount of carbonic acid that dissolves in rainwater and reaches the ground depends upon the temperature: the colder it gets, the less carbon dioxide gets rained out of the atmosphere. This feedback is part of the carbonate-silicate cycle, which regulates an Earth-like planet’s carbon dioxide over geologic (million year) time scales.

In a recent paper published in The Astrophysical Journal, titled “Limit cycles can reduce the width of the habitable zone,” my co-authors and I examine the propensity of this carbonate-silicate cycle to cause a planet to oscillate between completely frozen and completely ice-free climate states. We update a simplified climate model to account for the increase in weathering that occurs as a planet builds up a dense carbon dioxide atmosphere. Beginning with a planet in completely ice-covered conditions, we allow volcanic outgassing of carbon dioxide to continue until the planet melts from the enhanced greenhouse effect. However, under certain conditions, the planet will then start to rain out and weather the atmospheric carbon dioxide at such a fast rate that the greenhouse effect decreases and the planet again plummets into global glaciation.

This type of climate cycle between glacial and ice-free states is not likely to occur on Earth today, but such cycles might have been possible on early Earth during the Hadean eon. Extrasolar planets may also be prone to this type of climate cycling, although predicting whether or not this should occur depends upon knowing a planet’s volcanic outgassing rate. Our climate calculations place boundaries on the conditions under which we should expect such climate cycles to occur for Earth-like planets orbiting a range of different stars.

Colonizing Mars

National space agencies and private corporations have declared plans to send humans to the red planet, with longer-term planets of settlement and resource extraction likely to follow. Such actions may conflict with the Outer Space Treaty of 1967, which currently prohibits any sovereign claims in space.

In a recent Space Policy paper written by Sara Bruhns and myself, titled “A pragmatic approach to sovereignty on Mars,” we develop a practical approach toward allowing the settlement of space and use of its resources through a “bounded first possession” model with a required planetary park system. We suggest that exclusive economic claims could be made without establishing sovereignty on Mars, and we propose a model for management and conflict resolution on Mars that build upon lessons from history. We also recommend revisions to the Outer Space Treaty to resolve the current ambiguity of how nations, corporations, and individuals can use the resources of space.

« Older entries